Supported Cobalt Catalysts – Preparation, Characterisation and Reaction Studies

نویسنده

  • Leif Backman
چکیده

OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY P.O. BOX 1000, FI-02015 TKK http://www.tkk.fi Author Leif Backman Name of the dissertation Supported Cobalt Catalysts—Preparation, Characterisation and Reaction Studies Manuscript submitted Jan 23, 2009 Manuscript revised May 7, 2009 Date of the defence June 2, 2009 Monograph Article dissertation (summary + original articles) Faculty Faculty of Chemistry and Materials Science Department Department of Biotechnology and Chemical Technology Field of research Industrial Chemistry Opponent Professor Edd Anders Blekkan Supervisor Professor A. Outi I. Krause Abstract The aim of this work was to understand on the effect of thermal treatments, precursor and support on the interaction between the support and cobalt species, and further how the interaction affects the reducibility and dispersion of the catalyst. Silica and alumina supported cobalt catalysts were prepared, characterised and tested for catalytic activity. The catalysts were prepared by gas phase deposition techniques from cobalt acetylacetonate and cobalt carbonyl and by incipient wetness impregnation from cobalt nitrate. One of the goals was to investigate whether atomic layer deposition (ALD) using cobalt acetylacetonate precursors can produce well dispersed reducible cobalt catalysts. The cobalt acetylacetonates, Co(acac)2 and Co(acac)3, were found suitable for ALD. Silica supported catalysts were prepared by chemisorption of Co(acac)3, while Co(acac)2 was used on alumina. The main mode of interaction on silica was the ligand exchange reaction with OH groups. On alumina both the ligand exchange reaction and dissociative adsorption occurred. Steric hindrance limited the amount of precursor on the support. The acac ligands were removed through calcination at 450 °C. The cobalt loading was increased by repeating the precursor addition and air calcination steps up to five times; samples with about 2 to 8 Co atoms per nm were achieved on both silica and alumina. Calcination of the cobalt acetylacetonate modified samples led to the formation of silicateor aluminate-type species, which decreased the reducibility of the catalysts. The reducibility was enhanced when the calcination step after the last precursor reaction step was omitted (‘uncalcined’ catalysts). High reduction temperatures were still needed: the maximum metal surface area was obtained after reduction at 500–600 °C. The cobalt dispersion on the uncalcined ALD catalysts was, in general, higher than on the calcined catalysts. Furthermore, the dispersion was higher on the alumina supported catalysts than on corresponding silica supported ones. The interaction between cobalt and silica on the nitrate based catalysts was found to be weak, which led to high reducibility but modest dispersion. The main cobalt species on the catalysts was Co3O4. The use of reduction temperatures above 400 °C induced sintering or migration of silica, which decreased the cobalt surface area significantly. Dicobalt octacarbonyl, Co2(CO)8, was adsorbed on silica by vapour-phase adsorption in a fluidised bed reactor under CO. The carbonyl interacted through hydrogen bonding and rearranged to Co4(CO)12 on the support. The amount of precursor that adsorbed on the support was limited by steric hindrance. Decarbonylation was achieved by heat treatment, and higher cobalt loadings were obtained by repeating the deposition and decarbonylation steps. Chemisorption of hydrogen on cobalt was found to be activated and highly reversible. The effect was stronger on alumina than on silica supported samples. The ALD and nitrate based catalysts were tested for gas phase hydrogenation of toluene, and the activity was found to correlate with the available surface area of metallic cobalt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes

The potential of carbon nanotubes (CNT) supported cobalt catalysts for Fischer-Tropsch (FT) reaction is shown. Using the wet impregnation method cobalt on carbon nanotubes catalysts were prepared with cobalt loading varying from 15 to 45 wt. %. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-progra...

متن کامل

Solvent Pre-treated Effects of Carbon Nanotube-supported Cobalt Catalysts on Activity and Selectivity of Fischer-Tropsch Synthesis

In this study, the effect of preparation technique of carbon nanotube (CNT)-supported cobalt catalysts on the activity and selectivity of Fischer-Tropsch synthesis (FTS) was studied. Different concentrations of acetic acid were used for the pretreatment of the catalyst support to modify the surface properties of CNT. This modification improved the reduction degree and dispersion of supported co...

متن کامل

Manganese and Cobalt Salts of Para-Amino-Benzoic Acid Supported on Silica Gel as Oxidizing Catalysts

Para-Aminobenzoic acid is supported on silica gel via reaction of activated silica gel and p-aminobenzoic acid which is then converted to its manganese and cobalt salts. A mixture of the manganese and cobalt salts of the acid is used to catalyze allylic and benzylic alcohols to their corresponding carbonyl compounds in reasonable yields using oxygen or air. Reactions are clean and the catal...

متن کامل

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

Surface chemistry improvement of carbon nanotube (CNT) supported Fischer–Tropsch nanocatalysts

Functionalization of carbon nanotube (CNT) was performed, during preparation of Fischer–Tropsch synthesis (FTS) via cobalt nanocatalysts, to modify the surface properties of CNT support. Common and functionalized CNT supported cobalt nanocatalysts were prepared using impregnation wetness method with cobalt loading of 15 wt.%. The catalysts were characterized by Brunauer–Emmett–Teller (BET), Fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009